

Large Scale Simulations using lattice Boltzmann methods

Jonas Tölke Institut für Computeranwendungen im Bauingenieurwesen TU Braunschweig

19.4.2007

3rd Black Forest Grid Workshop, Freiburg

Outline

- Lattice Boltzmann method
- Parallelization
- Different Examples
- GPU Programming

Computational Fluids

Minimal kinetic model: Lattice-Boltzmann Automata

Wolfram 86, Hasslacher 86

$$f_i(t + \Delta t, \mathbf{x} + \mathbf{e}_i \Delta t) = f_i(t, \mathbf{x}) + i, \quad i = 0, \dots, b-1$$

- $= \mathsf{M}^{-1} \mathbf{k}$

- mass fractions f
- regular grid
- propagation
- collision

Collision operator

transformation into moment space:

 $\boldsymbol{m} = \mathsf{M}\boldsymbol{f} := (\rho, \rho u_x, \rho u_y, e, p_{xx}, p_{xy}, h_x, h_y, \epsilon)$

Cascade: Geier 06

 $k_0 = k_1 = k_2 = 0$ $k_e = s_e \left(e - 3 \rho \left(u_x^2 + u_y^2 \right) \right)$ $k_{xx} = s_{\nu} \left(p_{xy} - \rho \, u_x \, u_y \right)$ $k_{xy} = s_{\nu} \left(p_{xx} - \rho \left(u_x^2 - u_y^2 \right) \right)$ $k_{h_x} = s_h \left(h_x - 6u_y k_{xy} \left(\frac{1}{s_y} - \frac{1}{s_y} \right) \right)$ $+s_h\left(-u_x\left(\frac{1}{2}\left(e-\frac{k_e}{s_l}\right)-\frac{3}{2}\left(p_{xx}-\frac{k_{xx}}{s_l}\right)\right)\right)$ $k_{hy} = s_h \left(h_y - 6.0 u_x k_{xy} \left(\frac{1}{s_y} - \frac{1}{s_y} \right) \right)$ $+s_h\left(-u_y\left(\frac{1}{2}\left(e-\frac{k_e}{s_h}\right)+\frac{3}{2}\left(p_{xx}-\frac{k_{xx}}{s_h}\right)\right)\right)$ $k_{\epsilon} = s_{\epsilon} \left(\epsilon - 27u_x^2 u_y^2 + k_e \left(\frac{1}{\epsilon} - \frac{1}{\epsilon} \right) + \frac{3}{2} (u_x^2 + u_y^2) \left(e - \frac{k_e}{\epsilon} \right) \right)$ $+s_{\epsilon}\left(-\frac{9}{2}(u_{x}^{2}-u_{y}^{2})(p_{xx}-\frac{k_{xx}}{c})+36u_{x}u_{y}(p_{xy}-\frac{k_{xy}}{c})\right)$ $+s_{\epsilon}\left(-6u_x(h_x-\frac{k_{h_x}}{s})-6u_y(h_y-\frac{k_{h_y}}{s})\right)$

<u>1</u>	T	T	T	T	T	T	T	T
0	c	0	-c	0	С	-c	-c	с
0	0	С	0	-c	С	С	-c	-c
$-2 c^2$	c^2	c^2	c^2	c^2	$4 c^2$	4 c ²	4 c ²	$4 c^{2}$
0	c^2	$-c^{2}$	c^2	$-c^{2}$	0	0	0	0
0	0	0	0	0	c^2	$-c^{2}$	c^2	$-c^{2}$
0	$-c^{3}$	0	c^3	0	$2 c^3$	$-2 c^{3}$	$-2 c^{3}$	2 c ³
0	0	$-c^{3}$	0	c^3	$2 c^3$	2 c ³	$-2 c^{3}$	$-2 c^{3}$
c^4	$-2 c^4$	$-2 c^4$	$-2 c^4$	$-2 c^4$	$4 c^4$	$4 c^4$	$4 c^4$	4 c ⁴

TECHNISCHE UNIVERSITÄT

BRAUNSCHWEIG

$$k_{0} = k_{1} = k_{2} = 0$$

$$k_{3} = k_{e} = s_{e} \left(e - 3 \rho \left(u_{x}^{2} + u_{y}^{2} \right) \right)$$

$$k_{4} = k_{xx} = s_{\nu} \left(p_{xx} - \rho \left(u_{x}^{2} - u_{y}^{2} \right) \right)$$

$$k_{5} = k_{xy} = s_{\nu} \left(p_{xy} - \rho \, u_{x} \, u_{y} \right)$$

$$k_{6} = k_{hx} = s_{h} \, h_{x}$$

$$k_{7} = k_{hy} = s_{h} \, h_{y}$$

$$k_{8} = k_{\epsilon} = s_{\epsilon} \epsilon,$$

 $s_{\nu}, s_{e}, s_{h}, s_{\epsilon}$: Relaxation rates

Multi- scale analysis with computeralgebra

- grid
- collision-operator
- momenten
- Taylor expansion
- asymptotic expansion
- sort by order

$$\bigcup_{\substack{\partial \vec{u} \\ \partial t}} + \vec{u} \nabla \otimes \vec{u} + \nabla p = \nu \Delta \vec{u}$$

viscosity:

$$\nu = c^2 \Delta t \left(\frac{1}{3s_\nu} - \frac{1}{6}\right)$$

pressure:

$$p = \frac{c^2}{3}\rho$$

$$\begin{cases} \frac{1}{2} \frac$$

19.04.2007

Transport phenomena with Lattice-Boltzmann Automata

- Navier-Stokes (d2q6, d2q7, d2q9, d3q13, d3q15, d3q19, d3q27)
- advection-diffusion (d2q5,d2q9,d3q7,...)
- suitable for transport equation
- applications:
 - fluid mechanics (large range of Reynolds numbers)
 - aero-acoustic
 - traffic flow
 -

Computational aspects

- basic cells: squares and cubes
- coupled space and time resolution
- convergence properties:

LBE second-order accurate with respect to the corresponding solution of incompressible Navier-Stokes flow

- because of their explicit nature and local stencil LBE models are very well suited for vectorization and parallelization
- stress tensor locally available
- weakly compressible scheme (no Poisson equation is solved for the pressure)
- no numerical viscosity
- very efficient explicit time stepping scheme (high cell Reynolds-number)
- hydrodynamic boundary conditions are introduced for distributions
- conservative scheme for mass and momentum

Lattice Boltzmann Automata on tree type grids

recursive bipartition of unit cell

Tree type grids

• Quadtree in 2D

• Octrees in 3D

J. Tölke: Large Scale LB-Simulations

Tree type grids

- nested time stepping
- scaling of mass fraction
- interpolation in time and space

Filippova 98

Parallel computing / High performance computing

- complex geometry
- complex physics
- turbulence (Re^(11/4))
- computational steering
- real-time
- faster than real-time
- many different design cases

Systems we use

Aman at CAB:

HLRB II in Muich:

Processors: Peak-performance: Total size of memory : Direct Attached Disks:

120 350 GFlop/s 250 GByte 4000 GByte Processors: Peak-performance: Linpack Performance: Total size of memory : Direct Attached Disks: 4096 26.2 TFlop/s 24.5 TFlop/s 17.5 TByte 300 TByte

19.04.2007

J. Tölke: Large Scale LB-Simulations

Slide 13

Tree type grid parallel a priori

- space filling curves (Peano, Hilbert) for optimization of cache-access
- partition based on graph theory (work load / communication, METIS)

Partition for108 Prozessors:

space filling curves:

top: Peano-Hilbert "U"-ordering *bottom*: Morton "N"-ordering

Adaptive parallel tree type grids

- Adaptive Mesh Refinement (AMR)
- blocks on each level
- dynamic (de)allocation of blocks
- compromise performance and flexibility

Adaptive parallel tree type grids

19.04.2007

Virtual Fluids / LB – Multiphysics library

COMPUTERANWENDUNGEN

IM BAUINGENIEURWESEN

INSTITUT FÜR

0 0

0

19.04.2007

0 0 0 0

0

0

0

J. Tölke: Large Scale LB-Simulations

Circle

Rectangle

...

turbulent flow around a sphere

Fluid-Structure-Interaction with Lattice-Boltzmann-Methods on tree type grids

DFG-Research group 493: fluid-structure-interaction: Modeling, Simulation, Optimization

19.04.2007

Coupling of Structure- and Fluid Solver

Coupling algorithm (explicit) / Mapping of surface mesh

Benchmark Fluid-Structure-Interaction (Turek/Hron)

Multiphase flow in bioreactors

Simulation of bubble

Simulation of bioreactor

FIMOTUM - <u>FI</u>rst Principle Based <u>MO</u>delling of <u>Transport in Unsaturated Media</u>

Co-operation with:

-Institut für terrestrische Ökologie, Paul Scherrer Insitut (ETH-Zürich)
-Institut für Wasserbau (Univ. Stuttgart)
-Institut für Geoökologie (TU-BS)

goal:

Prediction of transport processes in unsaturated soils

19.04.2007

J. Tölke: Large Scale LB-Simulations

Slide 25

Reconstruction of geometry

voxel geometry (Scans von Kästner and Lehmann)

Iso-contur algorithm: Marching cube

800^3 voxel set: 110 Mio triangles

Numerical Experiments: Drainage-Imbibition

- sand, 100-500 micrometer
- resolution: ca. 5 micron
- marching cube/triangles
- Parallel
- multiphase-model
- up to 500 Mio. grid nodes

INSTITUT FÜR COMPUTERANWENDUNGEN IM BAUINGENIEURWESEN

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG

Hysteresis

19.04.2007

HVAC comfort optimization

DFG-SPP 1103

"Vernetzt-kooperative Planungsprozesse im Konstruktiven Ingenieurbau"

Optimization of HVAC layout

- virtual design space
- integration of different disciplines in one product model
- efficient methods for model transfer
- interactive optimization (Computational-Steering)
- visualization of target function immediately

HVAC Simulation: Predicted Mean Vote Index

Modeler

- Autodesk Architectural Desktop (ADT)
- Object Modeling
 Framework (OMF)

Aut	odesk Architec	tural Desktop	p 2005 - SCH	IULUNGSVI	ERSION - [Beis	spiel-TEST2.dv	vg]							$\bigcirc \bigcirc$	8
📆 Dat	tei Bearbeiten	Ansicht Einfüg	gen Format	Fenster	GemDoctor ?									- 7	×
	🕵 🔚 🗟 🍹) 🥺 🖓 🍕	≷: 📑 🔄	🗅 🌔 🌶	1 • · J	* 🎝 🗍 🔢	🗄 🖪 🧖 🛛	9 🔜 🔍 🔌	🧜 🔽 🖳 🖊	11-	3 🗟 🤇		• ~ •	• •	0
*	🖓 💢 🀏 🎲 🗖 I	Furn		[🔹 🛸 🔹										
															٩
EI + EIGENSCHAFTEN ×	3D-Volumenkörpe DOKUMENTATI Hyperlink Hinweise Referenzdok EIGENSCHAFTS simulation nosip pressure rho string_typ temperature type u_X u_Y u_Z EX EX Nosip		Erweiterte Daten Design								CAB Auswer Außenb Zeichnen CAB	HVAC	Sensor Ceiling 1 WallInlet 1 WallOutlet 1 24.0	K Micharterten Alle DALETEN V	
۲										Skalierung:	1:100 -	Eingabe 1-1	00 - 🕥	i 🖓	•
Bef	ehl:													-	-
Bef	ehl:												4	┍	Ċ
4.2691	, 0.5729 , 0.0000		FAI	NG RASTE		DLAR OFANG	OTRACK LST	MODELL					<u></u>		•
H	😂 Debug	🛄 [Educ	e 🛄 [i	duc	Auto	Educ	🔲 [Educ	船 сом	Educ	Desktop	* 🗲	0700	87 ° 6 6 (11:49	

From Model to Simulation

IFC product model modeler / CAD trangulation octree **CFD** Simulation visualization/ post-processing

Simulation of spring events and tsunamis

- "automatic" acquisition of GIS data
- fast mesh generation
- adaptive mesh refinement / coarsening using blocks
- coupling 3D free surface + 2D shallow water
- faster than real-time

GIS-Data from GEBCO Digital Atlas, British Oceanographic Data Centre

Simulation of a surf wave

TU München, Oskar von Miller – Institut, Versuchsanstalt für Wasserbau und Wasserwirtschaft

Simulation of a surf wave

Performance of LB kernels

simple LB D2Q9 kernel, propagation optimized data layout (Wellein 2006):

```
float F(nx, ny, 8, 2)
- -
for(y=0 ; y<ny ; y++){</pre>
  for(x=0 ; x<nx ; x++){</pre>
      load F(x,y,0,told)
      load F(x,y,1,told)
       . . .
      load F(x,y,8,told)
      // collision
      ...(complex computations)
      // propagation
      save F(x,y,0,tnew)
      save F(x+1,y,1,tnew)
      save F(x,y+1,2,tnew)
      save F(x+1,y-1,8,tnew)
  }
}
```


DRAM GAP

contiguous memory access is mandatory!

Performance of LB-Kernels

- LUPS: Lattice updates per second
- Limitation by Memory Bandwidth: d2q9 max LUPS = theoretical BW / [(1(read)+2(write)) * 4 byte * 9 particles]

Example: BW=6GB/s max LUPS = 6.0E9 GB/s / (3*4*9 Byte/lattice node) = 55E6 LUPS

 Limitation by FLOPS: d2q9 max LUPS = theortical FLOPS / (NCOLL Bytes/lattice node)

Example: 8 GFLOPS=8E9 FLOPS NCOLL = 200 FLOP (d2q9, MRT) max LUPS = 8.0E9 FLOPS / (200 FLOP/lattice node) = 40E6 LUPS

New hardware developements

- nVIDIA GTX 8800
- Compute Unified Device Architecture (CUDA)

19.04.2007

nVIDIA - G80: the parallel stream processor

nVIDIA - G80: the parallel stream processor

- The G80 has eight groups of 16 stream processors, for a total of 128 SPs
- Generalized floating-point processors capable of operating on any manner of data.
- G80's stream processors are scalar each SP handles one component
- SPs are clocked 1.35GHz, giving the GeForce 8800 a tremendous amount of floating-point processing power: 1.35*2*128 = 345 GFLOPs
- Eight "clusters" of stream processors are connected to six Render Output Unit (ROP) by a crossbar-style switch
- Each ROP partition has an 64-bits wide interface to graphics memory, which is clocked at 900 MHz.
- Memory Bandwidth: 6*64/8*0.9*2 (DDR) GB/s = 86 GB/s

Platform	Peak[Gflops]	MemBW[GB/s]	price [Euro]
Intel Core 2 Duo (2 GHz)	16	6-10	2000
NEC SX-8R A (8 CPUs)	281	563	Ca. 400 000
nVIDIA 8800 GTX	345	86	500

Programming model

Memory Model

19.04.2007

Application Programming Interface (API)

- Thread Block
- Grid of Thread Blocks
- Function Type Qualifiers (_device_, _global_, _host_)
- Variable Type Qualifiers (_device_,_shared_)
- Memory management (cudaMalloc, cudaMemcpy)
- Synchronisation (_syncthreads())

Memory Bandwidth

- Effective bandwidth of each memory space depends significantly on the memory access pattern
- simultaneous memory accesses of one thread block can be coalesced into a single contiguous, aligned memory access if:
 - thread number N access address BaseAddress + N
 - BaseAddress has to be aligned to 16*sizeof(type) bytes (otherwise memory bandwidth performance breaks down to about 8 GB/sec)

Simple example: Multiply a matrix with 0.5

The host code:

INSTITUT FÜR

OMPUTERANWENDUNGEN

M BAUINGENIEURWESEN

```
// allocation of host memory
float* fH = (float*) malloc(mem_size_Mat);
// initialize host memory
for(y=0 ; y< ny ; y++){</pre>
 for(x=0 ; x< nx ; x++){
  k = nx*y+x;
  fH[k]=1.0;
}
// allocate device memory
cudaMalloc((void**) &f0, mem_size_Mat);
cudaMalloc((void**) &f1, mem_size_Mat);
// copy host memory to device
cudaMemcpy(f0, fH, mem_size_Mat, cudaMemcpyHostToDevice);
// setup execution parameters
dim3 threads(num_threads, 1, 1);
dim3 grid(nx/num_threads, ny);
//Execute the kernel
Kernel<<< grid, threads >>> ( nx, f0,f1);
. . .
```



```
The device code (kernel):
```

```
_global_ void Kernel(int nx,float* f0,float* f1)
    // number of threads
    int num_threads = blockDim.x;
    // Thread index
    int tx = threadIdx.x;
    // Block index x
    int bx = blockIdx.x;
    // x-Index
    int x = tx + bx*num_threads;
    // Block index y = y-Index
    int y = blockIdx.y;
    // f0[k]:Load data from device memory
    // f1[k]:Write data to device memory
    int k = nx*y + x;
    f1[k]=0.5*f0[k];
}
```

56 GB/s memory throughput : 65% peak perf.

Nonlocal operations

- Each thread block has shared memory of 16 KB (2 cycles latency)
- Use shared memory for nonlocal operations (LB: Propagation)
- Synchronize
- Write back to device memory
- Synchronize Grid of Thread Blocks over borders

Results

Platform	MLUPS	MemBW[GB/s]	GFlops
Intel Core Duo (2 GHz)	8	1.0 (17 %)	1.6 (20%)
Intel Core 2 Duo (2 GHz)	16	2.0 (25 %)	3.2 (20%)
nVIDIA 8800 GTX	330	25.0 (30 %)	66.0 (19 %)

CPU versus GPU – The war is on

Thank you very much for your attendance!