

5th Black Forest Grid Workshop 23rd April 2009

Stateless Compute Cluster

Fast Deployment and Switching of Cluster Computing Nodes for easier Administration and better Fulfilment of Different Demands

> Dirk von Suchodoletz Chair of Communication Systems Prof. Gerhard Schneider

Institute for Computer Science / Computer Center of the University of Freiburg

Stateless Compute Cluster

- Structure of my presentation
 - Motivation of this presentation
 - Stateless operation of computers
 - Principles of operation
 - Boot procedures and menus

Speaker / Project

- Dirk von Suchodoletz dsuchod@uni-freiburg.de, Assistant of the CommSys professorship
- Project coordinator of a stateless Linux project used in pool systems to run WinXP in VM-Player
- Large computer pool environments up to 400+ machines, experiences in diskless Linux deployment since mid of 1990th
- Clusters have quite similar requirements, idea of extending the project

Motivation of this Talk

- Grid and cluster should be optimal/optimized to reduce administration efforts
- Coming from Linux desktop pool operation
 - Deploying same principles of pool OS distribution into the cluster domain
 - Using idle times of desktops/pools for cluster computing – they offer reasonable compute power, think of pools during night, weekends and holidays
 - No additional rack space, cooling, power, ...

Motivation of this Talk

- Typical administration tasks
 - OS roll-out to large number of nodes
 - Permanent updates of these machines
 - Fast inclusion of newly installed nodes
- Tests and experiments
 - Test new OS, versions
 - Test specific environments
 - If OS directly installed difficult to handle (partition the disk, more installation time and efforts, ...)

Stateless Computer Operation

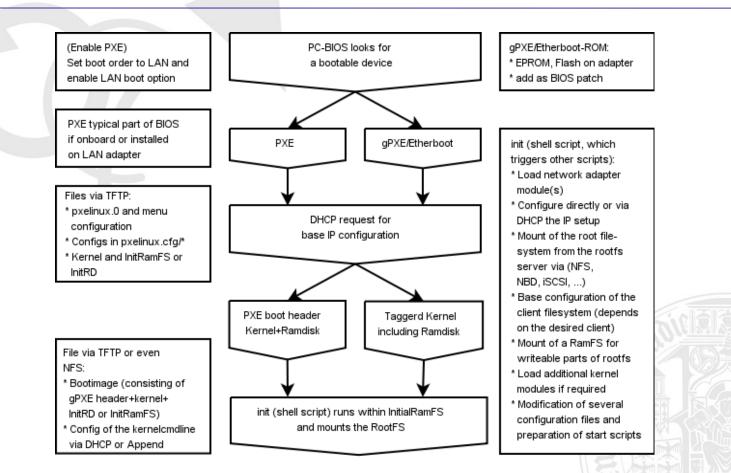
- Idea: Dramatic decreased administration because of centralization
 - Attendence of central servers instead of decentral nodes
 - New clients are simple to add
 - Easy replacement of failing machines
 - Rather different operating systems and or operations could be run on just same machine (just rebooted into other system)

Requirements: High-capacity Networks

- In most institutions: well expanded backbone with permanent increase of bandwidth and reduction of latency, while highly available
- Powerful Ethernets with up to 1GBit/s to the personal desktop
- Decreasing differences to avarage cluster nodes of the ethernet connected type
- Plain sailing: clients root filesystem transported via network

Stateless Linux I

- Different projects on the net and research at the professorship
 - Run already a number of maschines
 - Computer pool operation at the CC and other faculties
 - By now: general offering of remote boot services for third party in the university
- To achieve this objective
 - Offering of a simple standardized base environment extendable by third party



Stateless Linux II

- Client side
 - Does not need any installation to hard disk, but could use any disk for local scratch
 - All clients share the same root filesystem, which is stored on one/some servers
 - Clients are configured automatically during bootup
 - Bootup speed is despite network transfer often better then in disk based installations
 - Present system offers despite shared rootfilesystem per client configuration

Stateless Linux IV

- Servers side
 - One server is able to host several different rootfilesystems and large number of clients
 - Avarage hardware requirements, lots of RAM, fast disks, broad network connection to the backbone improve performance
 - Using redundant servers and failover it is easy to have simple maintenance
 - Using standard Internet protocols, like DHCP, TFTP and NFS

Technological Base: PC und PXE

- Typical desktop PC, cluster node offers the capability of PXE booting
- Integrated into centrally managed DHCP, depends simply on additional TFTP
- Lots of free and commercial boot products which could even be chained
 - Offering the option of sophisticated boot menus (perfect for flexible test environments)
 - Using PXE/SysLinux here

PXE Boot Menus

			_
	LX		
stateless ex	tensions		
	Nelcome to	OpenSLX	
SUSE 10.2 AC (NFS)			
SUSE 11.0 AC (NFS)			
SuSE 11.0 (NFS) Ubuntu 8.10 (NFS)			
suse-11.1-default		nfs	
ubuntu-8.04-infosc	reen2	nfs	
> Testmenii	_	_	
> 4.1			_
< Hauptmenii			

Software Base: OpenSLX Project

- Software suite to setup average Linux distributions for network/stateless booting
- Two major parts
 - Server and system setup done by admin
 - Installation of Linux distribution(s)
 - Configuring of additional componets (plugin system) and clients (DB)
 - Exporting the systems via NFS/NBD ...
 - Creating boot configuration and PXE menus

Software Base: OpenSLX Project

- Client setup
 - Scripts running on the client to configure hardware and services (on every client during every boot)
 - Translucent filesystems help to simplify even more ...
- General idea: using as much of the distribution code and packages
- Minimizing the adaptations to diskless operation

Software Base: OpenSLX Project

- Project provides a set of commandline tools for each admin task
- ... and provides setup scripts for a range of distribution like Ubuntu, SuSE, Debian, RedHat/Scientific Linux
- Well tested concept for lecture pool setups for over ten years ...

Testing needed!

- If any value seen in this appoach more real life experience required
- Basic Integration of Scientific Linux done, but
 - Which additional components required
 - Concept usable for cluster setups
 - Mixed mode tests (automatic re-booting of pool machines into different modes)

Conclusion

- Advantages
 - Ultra-fast deployment of cluster nodes
 - High flexibility and fast switching of operating systems, versions and dynamic reconfiguration
 - Easy advance testing
- Possible disadvantages
 - Network/server risk (of failing)
 - Network load and response time of root filesystem servers
 - Differences of disk-based/less operation

Questions!? / Discussion!

Thank you very much for your patience and please do not hesitate to ask questions, give comments, ... !

Chair of Communication Systems Computer Center of Freiburg University Herrmann-Herder-Str. 10 79104 Freiburg

Tel. +49 761 203 4652 / 8058 Fax +49 761 203 4640

dsuchod@uni-freiburg.de

www.ks.uni-freiburg.de/projekte/ldc / www.openstx.org