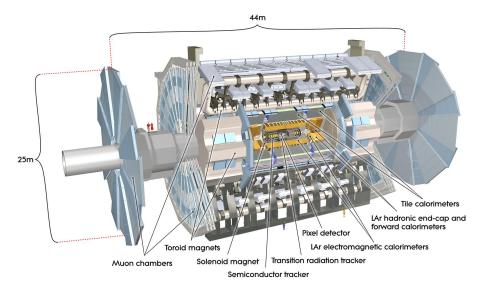
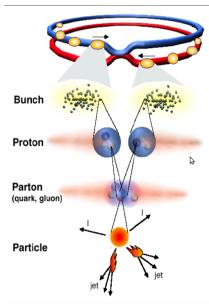
GRID COMPUTING IN THE ATLAS-EXPERIMENT AT THE LHC

Johannes Elmsheuser

Ludwig-Maximilians-Universität München


23 April 2009/BFG Workshop, Freiburg

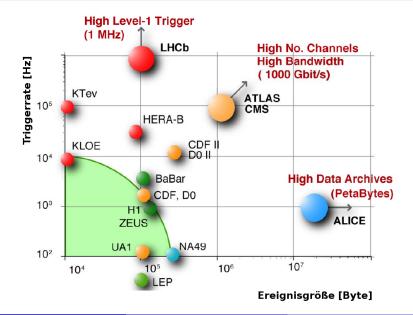

THE LHC AND EXPERIMENTS

THE ATLAS EXPERIMENT

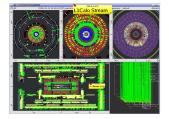
Collisions at the LHC

Proton-Proton-Kollisionen 2835 Teilchenbündel (Bunch)

10¹¹ Protonen / Bunch Kollisionsrate 40 MHz (25 ns)

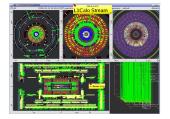

Schwerpunktsenergie 14 TeV (= 7400 x Ruheenergie der kollidierenden Teilchen)

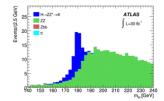
Schwerpunktsenergie der kollidierenden Quarks und Gluonen bis einige TeV


~25 pp-Kollisionen pro Bunch-Kollision

Interessante Ereignisse: 10⁻⁹ – 10⁻¹¹ unterdrückt!

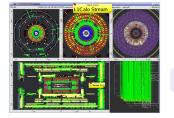
TRIGGER AND EVENT SIZES

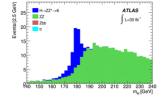



Why Grid Computing ?

Events recorded: 200 Hz (nominal)

Why Grid Computing ?




Events recorded: 200 Hz (nominal)

Statistical Analysis of $O(10^9)$ events

Why Grid Computing ?

$$\Rightarrow$$
 Grid \Rightarrow

Events recorded: 200 Hz (nominal)

Statistical Analysis of $O(10^9)$ events

AVERAGE ANALYSIS AT LHC I

Higgs-Search:
$$H \to WW^{(*)} \to \mu^+ \nu_\mu \mu^- \bar{\nu}_\mu$$
 for $1 \, \text{fb}^{-1}$

Monte Carlo events needed :

- 4 mass points: $m_H = 130 190 \text{ GeV}$: 100k + 500k Systematic studies
- Background: Z/γ^* : 2M, $t\bar{t}$: 500k, WW+WZ+ZZ: 200k, W+jets: 1M
- Total: 4.3M
- Time needed for simulation: 200h @ 10000 CPUs with 0.5h/event (no overhead)

Data:

- 10^9 Events/year
- \approx 50d time for reconstruction @ 10000 CPUs with 45s/event

AVERAGE ANALYSIS AT LHC II

Analysis:

- 10⁶ data events from trigger and skim-pre-selection
- Estimated time:
 - 1 week MC+data at 1 CPU with 10Hz
 - 4h MC+data at 1000 CPUs (Tier2-share)
 - Repeated optimization of analysis demands much more time

Scaling up:

- Assume 2000 physicist with same analysis
- Time: 3h at 100000 CPUs
- Shown analysis is not the most time consuming one
- Analysis with jets need much more CPU-time
- All given times: without additional overhead

Data volumes

• Every experiment stores several Peta Bytes/year

CPUs

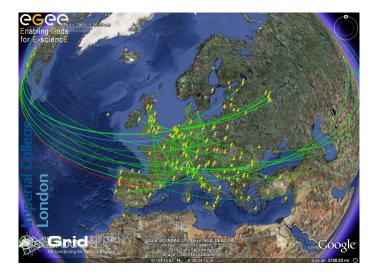
• Event complexity (large number of channels) and number of users demands: at least 100000 fast CPUs based on computing model

Software

• Every experiment has own complex software environment

Connectivity

• Data should be available 24/7 at a high bandwidth


ATLAS GRID INFRASTRUCTURE

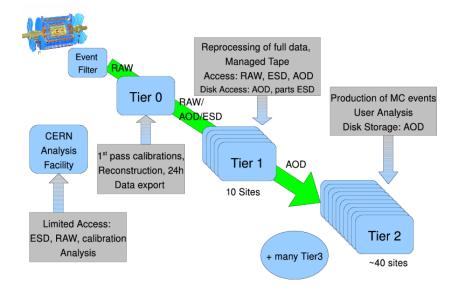
• Heterogeneous grid environment based on 3 grid infrastructures:

- Three major ATLAS Grid areas:
 - Production System (Panda): centralized MC simulation and Data reconstruction
 - Distributed Data Management (DDM/DQ2): centralized data movement
 - Distributed User Analysis: de-centralized individual analysis

GRID MIDDLE-WARE INSTALLATIONS

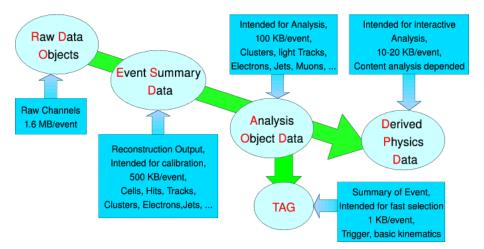


EGEE Real Time Monitor plug-in for Google Earth using ATLAS data


Johannes Elmsheuser (LMU München)

Grid Computing in ATLAS

Computing Center- and GridKa-Cloud

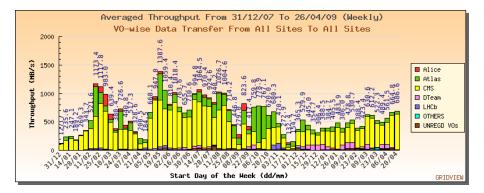


DATA DISTRIBUTION: ATLAS

EVENT DATA MODEL: ATLAS

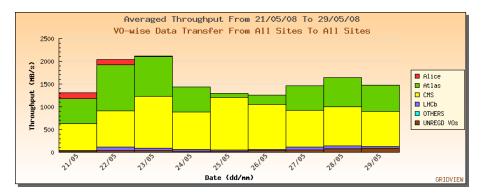
Refining the data by: Add higher level info, Skin, Thin, Slim

Grid has mainly been used so far for:


- Centrally organized data distribution
- Centrally organized Monte Carlo production done by a few experts
- After long learning curve: production and data distribution works at a good efficiency
- Experiments have implemented their customized DDM and WMS
- Amount of individual user not at full steam yet

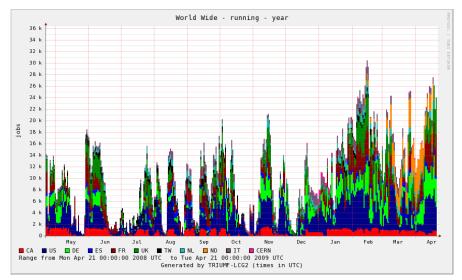
Question:

 Is the Grid infrastructure ready for user analysis of many individual users following the model:


,,Job to Data"

DATA MANAGEMENT AND TRANSFERS

• Data Transfer rates in the last 15 Month


DATA MANAGEMENT AND TRANSFERS

• Daily peaks at 2 GB/s (May'08 CCRC)

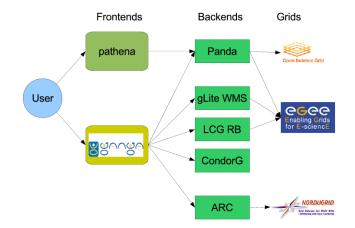
NUMBER OF ATLAS PRODUCTION JOBS

Structure caused by ATLAS software changes

Johannes Elmsheuser (LMU München)

Grid Computing in ATLAS

Naive assumption: Grid \approx large batch system

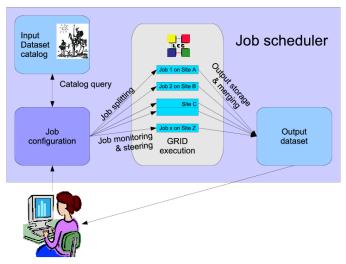


- Provide complicated job configuration for WMS
- Find suitable experiment software, installed in the Grid (100 CEs, 30 Software versions)
- Locate the data on different storage elements
- Job splitting, monitoring and book-keeping
- etc.

 \implies Need for automation and integration of various different components

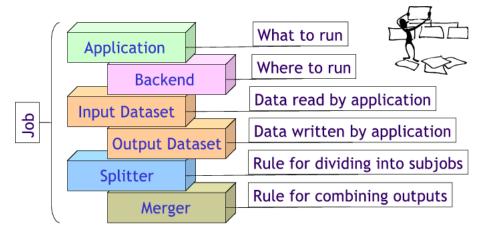
Many ways lead into the Grid !

ATLAS DISTRIBUTED ANALYSIS


Data is centrally being distributed by DQ2 - Jobs go to data

Johannes Elmsheuser (LMU München)

Grid Computing in ATLAS

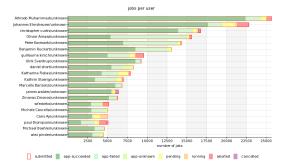

DISTRIBUTED ANALYSIS: GANGA

How to combine all different components: Job scheduler/manager: GANGA

GANGA JOB ABSTRACTION

• GANGA simplifies running of ATLAS (and LHCb) applications on a variety of Grid and non-Grid back-ends

JOB DEFINITION USING ATLAS SOFTWARE


GANGA offers three ways of user interaction:

- Shell command line
- Interactive IPython shell
- Graphical User Interface

Job definition at command line for GRID submission:

```
ganga athena
--inDS fdr08_run2.0052283.physics_Muon.merge.AOD.o3_f8_m10
--outputdata AnalysisSkeleton.aan.root
--split 3
--lcg --cloud DE
AnalysisSkeleton_topOptions.py
```

NUMBER OF ATLAS ANALYSIS JOBS

- GANGA ATLAS Jobs in EGEE Grid
- Since February >630k Jobs
- similar number on Panda

- Compare with daily \sim 100k productions jobs
- Since beginning of the year increasing number of users but many more expected !

CURRENT USER PROBLEMS AND SUPPORT

Frequently asked questions or problems:

- Where is my data ?
- There is a problem with my special code configuration
- The job had problems with accessing the input data files
- The ratio of CPU and Wall-time is largely varying btw. 10% 100% and depends on the site and user

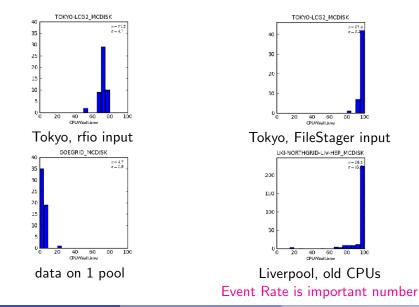
Support:

- Started ATLAS wide user support mailing list for DA
- Shifters in EU and US time zone
- Hoping for user2user support
- Has developed to one of the busiest mailing lists in ATLAS

ATLAS is testing since several month all sites with very high automatic generated analysis load

Differences Analysis vs. MC Production:

- ,,unorganized" user analysis vs. ,,organized" MC production
- User Analysis puts much higher load on SE compared to CPU dominated simulation


Tests of different work-flows:

- Sequential AOD analysis of MC data
- Sequential cosmics analysis with DB access at Tier1

Some highlights:

- Analysis tools generally stable and reliable
- Some weak spots detected in site infrastructures

HAMMERCLOUD - PLOTS

Grid Computing in ATLAS

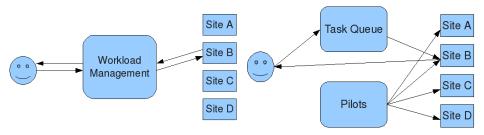
23/04/2009 26 / 27

CONCLUSIONS AND SUMMARY

What is working well so far:

- MC Production
- Automatic data distribution
- Analysis:
 - At a chosen number of sites
 - Small scale MC production
 - Automatic Standard Job Configurations

What works, but needs improvement:

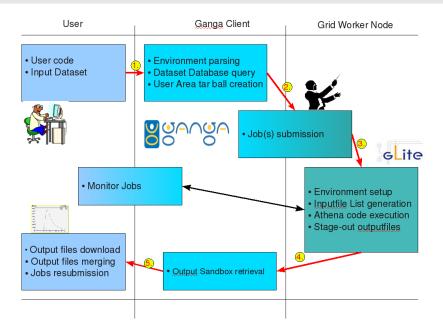

- Analysis:
 - 'Blind' job submission
 - Exotic use cases
- Site availability and Input file access

For the distributed analysis it is vital to have:

- Easy interface that does not scare off physicists
- A reliable and robust service of many components

BACKUP

JOB SCHEDULING


Job Push mode

- Dependent on information system and site status
- Decentralized
- Better control of site policies

Job Pull mode

- Workarounds for many Grid problems
- Avoids ,,black holes ", some down-times and bad site configurations
- Data pre-staging

JOB WORK-FLOW: ATHENA ON LCG BACK-END

